
__

NOTE: This is version 1.0, made available here by permission of
 the MIDI Manufacturers Association. Version 1.1 is the current one
 and should be obtained directly from the MMA (www.midi.org).

 MIDI SHOW CONTROL (MSC) 1.0
 MIDI 1.0 Recommended Practice RP-002
 1991-07-25

 MIDI Manufacturers Association
 (info at midi.org)

 1. INTRODUCTION

 The purpose of MIDI Show Control is to allow MIDI systems to
communicate with and to control dedicated intelligent control
equipment in theatrical, live performance, multi-media,
audio-visual and similar environments.

 Applications may range from a simple interface through which a
single lighting controller can be instructed to GO, STOP or
RESUME, to complex communications with large, timed and
synchronized systems utilizing many controllers of all types of
performance technology.

 The set of commands is modeled on the command structure of
currently existing computer memory lighting, sound and show
control systems. The intent is that translation between the MIDI
Show Control specification and dedicated controller commands
will be relatively straightforward, being based on the same
operating principles. On the other hand, it has been assumed
that translation will involve more than table look-up, and
considerable variation will be found in data specifications and
other communications details. In essence, MIDI Show Control
is intended to communicate easily with devices which are designed
to execute the same set or similar sets of operations.

 2. GENERAL STRUCTURE

 2.1. UNIVERSAL SYSTEM EXCLUSIVE FORMAT

 MIDI Show Control uses a single Universal Real Time System
Exclusive ID number (sub-ID 1 = 02H) for all Show commands
(transmissions from Controller to Controlled Device).

 In this version of Show Control, no command responses (from
Controlled Device to Controller) are specified or required in
order to optimize bandwidth requirements, system response time
and system reliability in the event of communication difficulties
with one or more Controlled Device. The guiding philosophy
behind live performance control is that, as much as possible,
failures of individual Controlled Devices should not impair
communications with other Controlled Devices. This concept has
been a part of MIDI design from the beginning and MIDI Show
Control continues to use an "open-loop" design in order that
standard MIDI practices may continue to be successfully utilized
in applications using all types of standard Channel and System
messages. However, a "closed-loop" version of Show Control has
been discussed and may be created in the future.

 In this document all transmitted characters are represented in
hex unless otherwise noted. The initials "msc" will be used to
denote the new MIDI Show Control sub-ID 1 (= 02H).

 The format of a Show Control message is as follows:

 F0 7F <device_ID> 02 <command_format> <command> <data> F7

 NOTES:

 1. No more than one command can be transmitted in a Sysex.
 2. The total number of bytes in a Show Control message
 should not exceed 128.
 3. Sysex's must always be closed with an F7H as soon as all
 currently prepared information has been transmitted.

 2.2. DEVICE IDENTIFICATION

 <device_ID> is always a DESTINATION device address.

 Commands are most often addressed to one device at a time. For
example, to command two lighting consoles to GO, transmit:

 F0 7F <device_ID=1> 02 <command_format=lighting> <GO> F7
 F0 7F <device_ID=2> 02 <command_format=lighting> <GO> F7
 <device_ID> values:
 00-6F Individual ID's
 70-7E Group ID's 1-15 (optional)
 7F "All-call" ID for system wide broadcasts

 Every device must be able to respond to both an individual and
the "all-call" (7FH) ID. The group addressing mode is optional.
A device may respond to one or more individual ID and one or more
group ID. Both <device_ID> and <command_format> of a message
must match the device_ID and command_format of a controlled
device before the message is recognized.

 If two separate controlled devices responding to the same
command_format are set to respond to the same device_ID then only
one message need be sent for both to respond.

 The "all-call" device_ID (7FH) is used for system wide
"broadcasts" of identical commands to devices of the same
command_format (or to all devices when used with
<command_format=all-types>; see 4.1, below.)

 Before fully interpreting the <device_ID> byte, parsing routines
will need to look at <msc> and <command_format>, both of which
follow <device_ID>, in order to first determine that the Sysex
contains Show Control commands in the appropriate format.

 A typical system will consist of at least one Controller
attached to one or more Controlled Devices. It is possible for
the same machine to be both a Controlled Device and a Controller
at the same time. In this case, the machine may act as a
translator, interpreter or converter of Show Control commands.
According to its programmed instructions, the receipt of one type
of command may result in the transmission of similar or different
commands.

 It is also a possibility that multiple Controller outputs could
be merged and distributed to one or more Controlled Devices.

 Optionally, Controlled Devices may be able to transmit (from a
MIDI Out connector) MIDI Show Control commands of the type
required by themselves to produce a desired result. In this
condition, the Controlled Device will be transmitting a valid
MIDI Show Control Command but may not necessarily be doing so as
a Controller.

 This is useful when the Controller has the ability (through MIDI
In) to capture valid MIDI Show Control messages in order to
conveniently create and edit the database of messages needed for
the performances being controlled. In this case, the Controlled
Device will be transmitting to the Controller, but only for the
purposes of capturing messages to store and retransmit during
performance.

 Another application allowed by the transmission of Show
Control commands by Controlled Devices is the slaving of multiple
Devices of similar type. For example, if a dedicated lighting
console transmits a Show Control command to "GO" when its GO
button is pressed, then any other dedicated lighting console that
obeys MIDI Show Control commands will also GO if it receives
MIDI from the first console. In this way, many Controlled
Devices may be controlled by another Controlled Device acting as
the Controller. Interconnection would follow the same pattern as
the normal Controller to Controlled Device arrangement.

 2.3. COMMAND_FORMATS

 A command_format is a message byte from a Controller to a
Controlled Device which identifies the format of the following
Command byte. Each command_format has a format code between 01H
and 7FH, and must be followed by a valid command byte.
(Command_format 00H is reserved for extensions, and not all codes
are currently defined.)

 2.4. COMMANDS

 A command is a message byte from a Controller to a Controlled
Device. Each command has a command code between 01H and 7FH,
and may be followed by one or more data bytes, up to a total
message length of 128 bytes. (Command 00H is reserved for
extensions, and not all codes are currently defined.)

 2.5. EXTENSION SETS

 Command_Format 00H and command 00H are reserved for two
extension sets:

 00 01 1st command_format or command at 1st extension level
 00 00 01 1st command_format or command at 2nd extension level

 At this time, no extended functions have been defined.
Nevertheless, to accommodate future extensions to MIDI Show
Control, parsing routines must always check for extensions
wherever command_format or command fields are encountered in
data.

 2.6. DATA LENGTH

 The only restriction to the number of data bytes sent is that

the total number of message bytes must not be more than 128. The
actual data format of the transmitted message will be defined by
the manufacturer of the Controlled Device. This means that the
Controller (or the programmer of the Controller) must know the
exact data format of the Controlled Device. This information
will be manufacturer and equipment specific, so it is important
that every manufacturer publish a thorough and unambiguous Sysex
Implementation document.

 Because this specification is intended to accommodate the needs
of an extremely wide variety of equipment and industry needs,
from very low cost light boards to the most complex audio/video
multimedia extravaganzas, the data formats used in simpler
systems will be considerably shorter and less complex than in
comprehensive equipment. Data are transmitted in the order of
most generic information first, with null character delimiters
between each group of data bytes in order to signify the sending
of progressively less generic data. For instance, simple
Controlled Devices may look only at the basic data and discard
the rest.

 As an example, a complex Controlled Device may be able to
process cue numbers with a large number of decimal point
delineated subsections i.e. "235.32.7.8.654" If a Controller
transmits this cue number to a simple Controlled Device that can
only process numbers in the form "xxx.x", then the simple Device
can either ignore these data or else respond to them in a
predictable manner, such as processing cue number "235.3."

 As a further example, cue number data may be transmitted calling
up cue 235.3 then followed by a delimiter and data specifying cue
list 36.6 and followed by a further delimiter specifying cue path
59. If the Device supports multiple cue lists but not multiple
cue paths, it would process cue 235.3 in cue list 36.6 (or 36)
and ignore the cue path data, simply using the current or default
cue path.

 Looking at the situation in the opposite manner, if simple cue
number data were transmitted to a Device capable of processing
all cue data, it would respond by processing that cue number in
the current or default cue list using the current or default cue
path.

 3. STANDARD SPECIFICATIONS

 Since data often contain some form of Cue Number designation, a
"Standard" specification for transmission of Cue Number and
related data provides consistency and saves space in the detailed
data descriptions (Section 5).

 3.1. CUE NUMBERS

 When a Cue Number is sent as data, the following additional
information fields may or may not be included as part of a
complete "Cue Number" description: Q_list and Q_path. Q_list
prescribes in which one of all currently Open Cue Lists the
Q_number is to be placed or manipulated. Q_path prescribes from
which Open Cue Path within all available cue storage media the
Q_number is to be retrieved. The data include these information
fields in the following order:

 <Q_number> 00 <Q_list> 00 <Q_path> F7

 Between each separate field a delimiter byte of the value 00H is
placed as shown to indicate the end of the previous field and
beginning of the next. It is acceptable to send only:

 <Q_number> F7
 or
 <Q_number> 00 <Q_list> F7.

 Controlled Devices should be able to accept more than one set
of delimiter bytes, including directly before F7H, and even if no
Q_number, Q_list or Q_path data are sent. Data are always
terminated by F7H.

 Q_number, Q_list and Q_path are expressed as ASCII numbers 0-9
(encoded as 30H-39H) with the ASCII decimal point character
(2EH) used to delineate subsections. In the example above, cue
235.6 list 36.6 path 59 would be represented by the hex data:

 32 33 35 2E 36 00 33 36 2E 36 00 35 39 F7

 Decimal points should be separated by at least one digit, but
Controlled Devices should accommodate the error of sending
two or more decimal points together. Any number of decimal point
delineated subsections may be used and any number of digits may
be used in each subsection except that the length of the data
must not cause the total length of the MIDI Show Control
message to exceed 128 bytes.

 Controlled Devices which do not support Q_list (or Q_path)
data must detect the 00H byte immediately after the Q_number (or
Q_list) data and then discard all data until F7H is detected.
Likewise, Controlled Devices which do not support the received
number of decimal point delineated subsections, the
received number of digits in a subsection or the total number of
received characters in any field must handle the data received in
a predictable and logical manner.

 Controlled Devices which support Q_list and/or Q_path will
normally default to the current or base Q_list and Q_path if
these fields are not sent with Q_number.

 For lighting applications, Q_list optionally defines the
Playback or Submaster Controls (0 to 127) with which the cue
corresponds.

 It is highly recommended that every manufacturer publish a
clear and concise description of their equipment's response to
the above conditions.

 3.2. TIME CODE NUMBERS

 Since data often contain some form of time reference, a
"Standard" specification for transmission of time provides
consistency and saves space in the data descriptions.

 MIDI Show Control time code and user bit specifications are
entirely consistent with the formats used by MIDI Time Code and
MIDI Cueing and are identical to the Standard Time Code format
proposed in MIDI Machine Control 0.05. Some extra flags have
been added, but are defined such that if used in the MIDI
Time Code/Cueing environment they would always be reset to zero,
and so are completely transparent.

 3.2.1. STANDARD TIME CODE (types {ff} and {st}):

 This is the "full" form of the Time Code specification, and
always contains exactly 5 bytes of data.

 Two forms of Time Code subframe data are defined:

 The first (labelled {ff}), contains subframe data exactly as
described in the MIDI Cueing specification i.e. fractional frames
measured in 1/100 frame units.

 The second form (labelled {st}) substitutes time code "status"
data in place of subframes. For example, when reading data from
tape, it is useful to know whether these are real time code data,
or simply time data updated by tachometer pulses during a high
speed wind. In this case, as in other cases of "moving" time
code, subframe data are practically useless, being difficult both
to obtain and to transmit in a timely fashion.

 hr mn sc fr (ff|st)
 hr = Hours and type: 0 tt hhhhh
 tt = time type (bit format):
 00 = 24 frame
 01 = 25 frame
 10 = 30 drop frame
 11 = 30 frame
 hhhhh = hours (0-23, encoded as 00-17hex)
 mn = Minutes: 0 c mmmmmm
 c = colour frame bit (copied from bit in time code
 stream):
 0 = non colour frame
 1 = colour framed code
 mmmmmm = minutes (0-59, encoded as 00-3Bhex)
 sc = Seconds: 0 k ssssss
 k = reserved - must be set to zero
 ssssss = seconds (0-59, encoded as 00-3Bhex)
 fr = Frames, byte 5 ident and sign: 0 g i fffff
 g = sign bit:
 0 = positive
 1 = negative (where signed time code is
 permitted)
 i = final byte identification bit:
 0 = subframes
 1 = status
 fffff = frames (0-29, encoded as 00-1Dhex)
 If final byte bit = subframes (i = 0):
 ff = fractional frames: 0 bbbbbbb (0-99, encoded as
 00-63hex)
 If final byte bit = status (i = 1):
 st = code status: 0 e v d xxxx
 e = estimated code flag bit:
 0 = normal time code
 1 = tach or control track updated code
 v = invalid code bit (ignore if e = 1):
 0 = valid
 1 = invalid (error or not current)
 d = video field identification bit:
 0 = no field information in this frame
 1 = first frame in 4 or 8 field video
 sequence
 xxxx = reserved bits - must be set to 0000

 DROP FRAME NOTES

 1. When writing time code data, the drop-frame or
 non-drop-frame status of the data being written may be
 overridden by the status of the Controlled Device (i.e. the
 time code from the device itself).

 For example, if the SET_CLOCK data are loaded with a
 non-drop-frame number and if the time code on the Controlled
 Device is drop-frame, then the SET_CLOCK data will
 simply be interpreted as a drop-frame number, with no
 attempt being made to perform any mathematical
 transformations.

 2. Furthermore, if the above SET_CLOCK number had in fact been
 loaded with a non-existent drop-frame number (e.g.
 00:22:00:00), then the next higher valid number would have
 been used (in this case, 00:22:00:02).

 3. Calculation of offsets, or simply the mathematical
 difference between two time codes, can cause confusion when
 one or both of the numbers is drop-frame.

 For the purposes of this specification, DROP-FRAME NUMBERS
 SHOULD FIRST BE CONVERTED TO NON-DROP-FRAME BEFORE OFFSET
 CALCULATIONS ARE PERFORMED. Results of an offset
 calculation will then be expressed as non-drop-frame
 quantities.

 To convert from drop-frame to non-drop-frame, subtract the
 number of frames that have been "dropped" since the
 reference point 00:00:00:00. For example, to convert the
 drop-frame number 00:22:00:02 to non-drop-frame, subtract 40
 frames, giving 00:21:58:22. The number 40 is produced by
 the fact that 2 frames were "dropped" at each of the minute
 marks 01 through 09, 11 through 19, 21 and 22.

 (Some manufacturers will prefer to store all internal time
 codes as a simple quantity of frames from reference point
 00:00:00:00. This reduces calculation complexity, but does
 require that conversions are performed at all input or
 output stages.)

 4. INDEX LIST

 4.1. COMMAND_FORMATS

 Command_formats fall into the categories of General, Specific
and All-types. General command_formats have a least significant
nibble equal to 0, except for lighting which is 01H. Specific
command_formats are related to the General command_format with
the most significant nibble of the same value, but represent a
more restricted range of functions within the format.

 Command_format "All-types" (7FH) is used for system wide
"broadcasts" of identical commands to devices of the same
device_ID (or to all devices when used with <device_ID=All-call>;
see 2.2, above.)

 For example, use of the All-types command_format along with the
All-call device_ID allows a complete system to be RESET with a
single message.

 Controlled Devices will normally respond to only one

command_format besides All-types. Occasionally, more complex
control systems will respond to more than one command_format
since they will be in control of more than one technical
performance element. Controllers, of course, should normally be
able to create and send commands in all command_formats,
otherwise their usefulness will be limited.

 Hex command_format
 --
 00 reserved for extensions

 01 Lighting (General Category)
 02 Moving Lights
 03 Colour Changers
 04 Strobes
 05 Lasers
 06 Chasers

 10 Sound (General Category)
 11 Music
 12 CD Players
 13 EPROM Playback
 14 Audio Tape Machines
 15 Intercoms
 16 Amplifiers
 17 Audio Effects Devices
 18 Equalisers

 20 Machinery (General Category)
 21 Rigging
 22 Flys
 23 Lifts
 24 Turntables
 25 Trusses
 26 Robots
 27 Animation
 28 Floats
 29 Breakaways
 2A Barges

 30 Video (General Category)
 31 Video Tape Machines
 32 Video Cassette Machines
 33 Video Disc Players
 34 Video Switchers
 35 Video Effects
 36 Video Character Generators
 37 Video Still Stores
 38 Video Monitors

 40 Projection (General Category)
 41 Film Projectors
 42 Slide Projectors
 43 Video Projectors
 44 Dissolvers
 45 Shutter Controls

 50 Process Control (General Category)
 51 Hydraulic Oil
 52 H20
 53 CO2
 54 Compressed Air
 55 Natural Gas

 56 Fog
 57 Smoke
 58 Cracked Haze

 60 Pyro (General Category)
 61 Fireworks
 62 Explosions
 63 Flame
 64 Smoke pots

 7F All-types

 Although it can be seen that a wide variety of potentially
dangerous and life-threatening performance processes may be under
MIDI Show Control, the intent of this specification is to
allow the user considerably more exacting and precise control
over the type of command_format and command which will result in
the desired result than normally may be provided in a non-
electronic cueing situation. The major advantages to the use of
MIDI Show Control in these conditions are:

 1. Less likelihood of errors in cueing. Digital communications
 can be demonstrated to be extremely reliable in repetitive
 duty conditions; much more so than tired or inexperienced
 stagehands.

 2. More precise timing. Likewise, digital communications and
 computer control can be consistently accurate in automatic
 timing sequences and exactly as accurate as their human
 operators when under manual control.

 IN NO WAY IS THIS SPECIFICATION INTENDED TO REPLACE ANY ASPECT
OF NORMAL PERFORMANCE SAFETY WHICH IS EITHER REQUIRED OR MAKES
GOOD SENSE WHEN DANGEROUS EQUIPMENT IS IN USE. MANUAL CONTROLS
SUCH AS EMERGENCY STOPS, DEADMAN SWITCHES, CONFIRMATION ENABLE
CONTROLS OR LIKE SAFETY DEVICES SHALL BE USED FOR MAXIMUM SAFETY.

 AUTOMATIC SAFETY DEVICES SUCH AS LIMIT SWITCHES, PROXIMITY
SENSORS, GAS DETECTORS, INFRARED CAMERAS AND PRESSURE AND MOTION
DETECTORS SHALL BE USED FOR MAXIMUM SAFETY. MIDI SHOW CONTROL
IS NOT INTENDED TO TELL DANGEROUS EQUIPMENT WHEN IT IS SAFE TO
GO: IT IS ONLY INTENDED TO SIGNAL WHAT IS DESIRED IF ALL
CONDITIONS ARE ACCEPTABLE AND IDEAL FOR SAFE PERFORMANCE. ONLY
PROPERLY DESIGNED SAFETY SYSTEMS AND TRAINED SAFETY PERSONNEL CAN
ESTABLISH IF CONDITIONS ARE ACCEPTABLE AND IDEAL AT ANY TIME.

 4.2. RECOMMENDED MINIMUM SETS

 MIDI Show Control does not specify an absolute minimum set of
commands and data which must be implemented in each
device responding to a given command_format.

 However, in order to ease the burden of interfacing between
Controllers and Controlled Devices from different manufacturers,
four RECOMMENDED MINIMUM SETS of commands and data have been
created. Once a Controlled Device is specified to conform to a
particular Recommended Minimum Set, then the task of designing a
Controller which will successfully operate that device is
considerably simplified.

 The currently defined Recommended Minimum Sets are:

 1. Simple Controlled Device; no time code; basic data only

 2. No time code; full data capability
 3. Full time code; full data capability

 Assignment of any particular command or data to a Recommended
Minimum Set may be found in the far right hand column of the
Index List.

 Recommended Minimum Sets are in no way intended to restrict the
scope of operations supported by any device. They are offered
only in the spirit of a "lowest common denominator".

 4.3. GENERAL COMMANDS

 The following commands are basic to the current implementation
of Memory Lighting systems and probably apply to all dedicated
theatrical show control systems in a general sense. Although it
is not required that Controlled Devices incorporate all of these
commands, it is highly recommended:

 Number
 of data Recomm'd
 Hex command bytes Min Sets

 00 reserved for extensions
 01 GO variable 123
 02 STOP variable 123
 03 RESUME variable 123
 04 TIMED_GO variable -23
 05 LOAD variable -23
 06 SET 4 or 9 -23
 07 FIRE 1 -23
 08 ALL_OFF 0 -23
 09 RESTORE 0 -23
 0A RESET 0 -23
 0B GO_OFF variable -23

 4.4. SOUND COMMANDS

 The following commands, in addition to the above, are basic to
the current implementation of Computer Controlled Sound Memory
Programming Systems and are widely used by Show Control Systems
in more comprehensive applications. It is recommended that
Controllers support the transmission of these commands:

 Number
 of data Recomm'd
 Hex command bytes Min Sets

 10 GO/JAM_CLOCK variable --3
 11 STANDBY_+ variable -23
 12 STANDBY_- variable -23
 13 SEQUENCE_+ variable -23
 14 SEQUENCE_- variable -23
 15 START_CLOCK variable --3
 16 STOP_CLOCK variable --3
 17 ZERO_CLOCK variable --3
 18 SET_CLOCK variable --3
 19 MTC_CHASE_ON variable --3
 1A MTC_CHASE_OFF variable --3
 1B OPEN_CUE_LIST variable -23
 1C CLOSE_CUE_LIST variable -23
 1D OPEN_CUE_PATH variable -23

 1E CLOSE_CUE_PATH variable -23

 5. DETAILED COMMAND AND DATA DESCRIPTIONS

 00 Reserved for extensions

 01 GO

 Starts a transition or fade to a cue. Transition time
 is determined by the cue in the Controlled Device. If
 no Cue Number is specified, the next cue in numerical
 sequence GOes. If a Cue Number is specified, that cue
 GOes.
 Transitions "run" until complete.
 If the Controller wishes to define the transition time,
 TIMED_GO should be sent.

 In Controlled Devices with multiple Cue Lists, if no Cue
 Number is Specified, the next cues in numerical order
 and numbered identically and which are in Open Cue Lists
 GO. If Q_number is sent without Q_list, all cues with a
 number identical to Q_number and which are in
 Open Cue Lists GO.

 01 GO
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 02 STOP

 Halts currently running transition(s). If no Cue Number
 is specified, all running transitions STOP. If a Cue
 Number is specified, only that single, specific
 transition STOPs, leaving all others unchanged.

 02 STOP
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 03 RESUME

 Causes STOPped transition(s) to continue running. If no
 Cue Number is specified, all STOPped transitions
 RESUME. If a Cue Number is specified, only that
 transition RESUMEs, leaving all others unchanged.

 03 RESUME
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 04 TIMED_GO

 Starts a timed transition or fade to a cue. If no Cue
 Number is specified, the next cue in numerical sequence
 GOes. If a Cue Number is specified, that cue GOes.
 Transitions "run" until complete.

 Time is Standard Time Specification with subframes (type
 {ff}), providing anything from "instant" to 24 hour
 transitions. If a Controlled Device does not support
 TIMED_GO it should GO instead, ignoring the time data
 but processing Cue Number data normally. If the
 transition time desired is the preexisting default cue
 time, GO should be sent instead of TIMED_GO.

 Rules for Controlled Devices with multiple Cue Lists are
 the same as for GO, above.

 04 TIMED_GO
 hr mn sc fr ff Standard Time Specification
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 05 LOAD

 Places a cue into a standby position. Cue Number must
 be specified. LOAD is useful when the cue desired takes
 a finite time to access. LOAD is sent in advance so
 that the cue will GO instantly.

 In Controlled Devices with multiple Cue Lists,
 if Q_number is sent without Q_list, all cues with a
 number identical to Q_number and which are in
 Open Cue Lists LOAD to standby.

 05 LOAD
 <Q_number> required
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 06 SET

 Defines the value of a Generic Control. The Generic
 Control and its value are each specified by a 14 bit
 number. A Controlled Device may treat virtually any of
 its variables, attributes, rates, levels, modes,
 functions, effects, subs, channels, switches, etc. as
 Generic Controls which may be sent values via SET.
 Optionally, the time it takes the Generic Control to
 achieve its value may be sent.

 Time is Standard Time Specification with subframes (type
 {ff}), providing anything from "instant" to 24 hour
 transitions. If a Controlled Device does not support
 times in SET, it should ignore time data.

 Standard Generic Control Numbers for Lighting:

 0-127 Sub masters
 128-129 Masters of the first playback
 130-131 Masters of the second playback
 ...
 etc.
 ...
 190-191 Masters of the 32nd playback
 192-223 Speed controllers for the 32 playbacks
 224-255 Chase sequence masters
 256-287 Chase sequence speed masters
 510 Grand Master for all channels
 511 General speed controller for all fades
 512-1023 Individual channel levels

 06 SET
 cc cc Generic Control Number, LSB first
 vv vv Generic Control Value, LSB first
 hr mn sc fr ff Standard Time Specification, optional

 07 FIRE

 Triggers a preprogrammed keyboard Macro. The Macro is
 defined by a 7 bit number. The Macros themselves are
 either programmed at the Controlled Device, or loaded
 via MIDI file dump facilities using the ASCII Cue Data
 format or any method applicable to the Controlled
 Device.

 07 FIRE
 mm Macro Number

 08 ALL_OFF

 Independently turns all functions and outputs off
 without changing the control settings. Operating status
 prior to ALL_OFF may be reestablished by RESTORE.

 08 ALL_OFF

 09 RESTORE

 Reestablishes operating status to exactly as it was
 prior to ALL_OFF.

 09 RESTORE

 0A RESET

 Terminates all running cues, setting all timed functions
 to an initialized state equivalent to a newly powered-up
 condition and loads the first cue of each applicable cue
 list into the appropriate standby positions. In other
 words, RESET stops the show without arbitrarily changing
 any control values and loads the top of the show to
 standby.

 It should be decided by the manufacturer of the
 Controlled Device whether or not RESET should
 automatically open all CLOSEd_CUE_LISTs and

 CLOSEd_CUE_PATHs and this decision should be stated
 clearly in the device's MIDI Implementation
 documentation.

 0A RESET

 0B GO_OFF

 Starts a transition or fade of a cue to the off state.
 Transition time is determined by the cue in the
 Controlled Device.

 If no Cue Number is specified, the current cue GOes OFF.
 If a Cue Number is specified, that cue GOes OFF.

 In Controlled Devices with multiple Cue Lists, if no Cue
 Number is Specified, all currently active cues in Open
 Cue Lists GO OFF. If Q_number is sent without Q_list,
 all cues with a number identical to Q_number and which
 are in Open Cue Lists GO OFF.

 For compatibility with Controlled Devices which do not
 automatically replace an existing cue with a new cue
 upon receipt of the GO command, Controllers should
 optionally prompt the programmer to simultaneously
 create a GO_OFF command.

 0B GO_OFF
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter
 <Q_path> optional

 10 GO/JAM_CLOCK

 Starts a transition or fade to a cue simultaneous with
 forcing the clock time to the 'Go Time' if the cue is
 an 'Auto Follow' cue. Transition time is determined by
 the cue in the Controlled Device.

 If no Cue Number is specified, the next cue in numerical
 sequence GOes and the clock of the appropriate Cue List
 JAMs to that cue's time. If the next cue in numerical
 sequence is a 'Manual' cue (i.e. if it has not been
 stored with a particular 'Go Time,' making it an
 'Auto Follow' cue), the GO/JAM_CLOCK command is ignored.

 If a Cue Number is specified, that cue Gop and the clock
 of the appropriate Cue List JAMs to the cue's time
 unless the cue is 'Manual' in which case no change
 occurs.

 Rules for Controlled Devices with multiple Cue Lists are
 the same as for GO, above.

 10 GO/JAM_CLOCK
 <Q_number> optional; required if Q_list is sent
 00 delimiter
 <Q_list> optional; required if Q_path is sent
 00 delimiter

 <Q_path> optional

 11 STANDBY_+

 Places into standby position the next cue in numerical
 order after the cue currently in standby.

 If Q_list is not sent, the Open Cue List containing the
 next cue in numerical order is used. If more than one
 Open Cue List have cues with an identical number then
 those cues will move to their respective standby
 positions.

 If Q_list is sent in Standard Cue Number Form, only
 the next cue in the Cue List specified moves to the
 standby position.

 11 STANDBY_+
 <Q_list> optional

 12 STANDBY_-

 Places into standby position the previous cue in
 numerical order prior to the cue currently in standby.

 If Q_list is not sent, the Open Cue List containing the
 previous cue in numerical order is used. If more than
 one Open Cue List have cues with an identical number
 then those cues will move to their respective standby
 positions.

 If Q_list is sent in Standard Form, only the previous
 cue in the Cue List specified moves to the standby
 position.

 12 STANDBY_-
 <Q_list> optional

 13 SEQUENCE_+

 Places into standby position the next parent cue in
 numerical sequence after the cue currently in standby.

 'Parent' refers to the integer value of the cue's
 number prior to the first decimal point (the "most
 significant number") For example, if cue 29.324.98.7
 was in standby and the cues following were 29.325, 29.4,
 29.7, 29.9.876, 36.7, 36.7.832, 36.8, 37., and 37.1,
 then cue 36.7 would be loaded to standby by SEQUENCE_+.

 If Q_list is not sent, the Open Cue List containing the
 next cue in parental sequence is used. If more than one
 Open Cue List have cues with a completely identical
 number then those cues will move to their respective
 standby positions.

 If Q_list is sent in Standard Form, only the next
 parent cue in the Cue List specified moves to the
 standby position.

 13 SEQUENCE_+

 <Q_list> optional

 14 SEQUENCE_-

 Places into standby position the lowest numbered parent
 cue in the previous numerical sequence prior to the cue
 currently in standby.

 'Parent' refers to the integer value of the cue's
 number prior to the first decimal point (the "most
 significant number") For example, if cue 37.4.72.18.5
 was in standby and the cues preceding were 29.325, 29.4,
 29.7, 29.9.876, 36.7, 36.7.832, 36.8, 37., and 37.1,
 then cue 36.7 would be loaded to standby by SEQUENCE_-.

 If Q_list is not sent, the Open Cue List containing the
 previous parental sequence is used. If more than one
 Open Cue List have cues with identical lowest numbered
 parent cues in previous parental sequence then those
 cues will move to their respective standby positions.

 If Q_list is sent in Standard Form, only the first
 parent cue in the previous sequence of the Cue List
 specified moves to the standby position.

 14 SEQUENCE_-
 <Q_list> optional

 15 START_CLOCK

 Starts the 'Auto Follow' clock timer. If the clock is
 already running, no change occurs. The clock continues
 counting from the time value which it contained while it
 was Stopped.

 If Q_list is not sent, the clocks in all Open Cue Lists
 Start simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List Starts.

 15 START_CLOCK
 <Q_list> optional

 16 STOP_CLOCK

 Stops the 'Auto Follow' clock timer. If the clock is
 already stopped, no change occurs. While the clock is
 stopped, it retains the time value which it contained
 at the instant it received the STOP command.

 If Q_list is not sent, the clocks in all Open Cue Lists
 Stop simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List Stops.

 16 STOP_CLOCK
 <Q_list> optional

 17 ZERO_CLOCK

 Sets the 'Auto Follow' clock timer to a value of
 00:00:00:00.00, whether or not it is running. If the
 clock is already stopped and Zeroed, no change occurs.
 ZERO_CLOCK does not affect the clock's running status.

 If Q_list is not sent, the clocks in all Open Cue Lists
 Zero simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List Zeros.

 17 ZERO_CLOCK
 <Q_list> optional

 18 SET_CLOCK

 Sets the 'Auto Follow' clock timer to a value equal to
 the Standard Time sent, whether or not it is running.
 SET_CLOCK does not affect the clock's running status.

 If Q_list is not sent, the clocks in all Open Cue Lists
 Set simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List Sets.

 18 SET_CLOCK
 hr mn sc fr ff Standard Time Specification
 <Q_list> optional

 19 MTC_CHASE_ON

 Causes the 'Auto Follow' clock timer to continuously
 contain a value equal to incoming MIDI Time Code. If no
 MTC is being received when this command is received, the
 clock remains in its current running or stopped status
 until MTC is received, at which time the clock
 continuously exhibits the same time as MTC. If MTC
 becomes discontinuous, the clock continues to display
 the last valid MTC message value received.

 If Q_list is not sent, the clocks in all Open Cue Lists
 Chase simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List Chases.

 19 MTC_CHASE_ON
 <Q_list> optional

 1A MTC_CHASE_OFF

 Causes the 'Auto Follow' clock timer to cease Chasing
 incoming MIDI Time Code. When MTC_CHASE_OFF is
 received, the clock returns to running or stopped status
 according to its operating status at the instant
 MTC_CHASE_ON was received.

 MTC_CHASE_OFF does not change the clock time value; i.e.

 if the clock is stopped, it retains the last valid MTC
 message value received (or simply the most recent time
 in the clock register); if the clock is running, it
 continues to count from the most recent time in its
 register.

 If Q_list is not sent, the clocks in all Open Cue Lists
 stop Chasing simultaneously.

 If Q_list is sent in Standard Form, only the clock in
 that Cue List stops Chasing.

 1A MTC_CHASE_OFF
 <Q_list> optional

 1B OPEN_CUE_LIST

 Makes a Cue List available to all other commands and
 includes any cues it may contain in the current show.

 When OPEN_CUE_LIST is received, the specified Cue List
 becomes active and cues in it can be accessed by normal
 show requirements. Q_list in Standard Form must be
 sent.

 If the specified Cue List is already Open or if it
 does not exist, no change occurs.

 1B OPEN_CUE_LIST
 <Q_list> required

 1C CLOSE_CUE_LIST

 Makes a Cue List unavailable to all other commands and
 excludes any cues it may contain from the current show.

 When CLOSE_CUE_LIST is received, the specified Cue List
 becomes inactive and cues in it cannot be accessed by
 normal show requirements, but the status of the cues in
 the list does not change. Q_list in Standard Form must
 be sent.

 If the specified Cue List is already Closed or if it
 does not exist, no change occurs.

 1C CLOSE_CUE_LIST
 <Q_list> required

 1D OPEN_CUE_PATH

 Makes a Cue Path available to all other MIDI Show
 Control commands and to all normal show cue path access
 requirements as well.

 When OPEN_CUE_PATH is received, the specified Cue Path
 becomes active and cues in it can be accessed by the
 Controlled Device. Q_path in Standard Form must be
 sent.

 If the specified Cue Path is already Open or if it
 does not exist, no change occurs.

 1D OPEN_CUE_PATH
 <Q_path> required

 1E CLOSE_CUE_PATH

 Makes a Cue Path unavailable to all other MIDI Show
 Control commands and to all normal show cue path access
 requirements as well.

 When CLOSE_CUE_PATH is received, the specified Cue Path
 becomes inactive and cues in it cannot be accessed by
 the Controlled Device. Q_path in Standard Form must be
 sent.

 If the specified Cue Path is already Closed or if it
 does not exist, no change occurs.

 1E CLOSE_CUE_PATH
 <Q_path> required

